Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Sci Rep ; 12(1): 2434, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165331

ABSTRACT

Emerging evidence suggests that disruption of circadian rhythmicity contributes to development of comorbid depression, cardiovascular diseases (CVD), and type 2 diabetes mellitus (T2DM). Physical exercise synchronizes the circadian system and has ameliorating effects on the depression- and anxiety-like phenotype induced by circadian disruption in mice and sand rats. We explored the beneficial effects of voluntary wheel running on daily rhythms, and the development of depression, T2DM, and CVD in a diurnal animal model, the fat sand rat (Psammomys obesus). Voluntary exercise strengthened general activity rhythms, improved memory and lowered anxiety- and depressive-like behaviors, enhanced oral glucose tolerance, and decreased plasma insulin levels and liver weight. Animals with access to a running wheel had larger heart weight and heart/body weight ratio, and thicker left ventricular wall. Our results demonstrate that exercising ameliorates pathological-like daily rhythms in activity and blood glucose levels, glucose tolerance and depressive- and anxiety-like behaviors in the sand rat model, supporting the important role of physical activity in modulating the "circadian syndrome" and circadian rhythm-related diseases. We suggest that the utilization of a diurnal rodent animal model may offer an effective way to further explore metabolic, cardiovascular, and affective-like behavioral changes related to chronodisruption and their underlying mechanisms.


Subject(s)
Cardiovascular Diseases/complications , Cardiovascular Diseases/therapy , Chronobiology Disorders/complications , Chronobiology Disorders/therapy , Circadian Rhythm , Depression/complications , Depression/therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Exercise Therapy/methods , Physical Conditioning, Animal/methods , Animals , Anxiety/complications , Anxiety/physiopathology , Anxiety/therapy , Blood Glucose/analysis , Cardiovascular Diseases/physiopathology , Chronobiology Disorders/physiopathology , Depression/physiopathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Gerbillinae , Glucose Tolerance Test , Insulin/blood , Locomotion , Male , Rats , Suprachiasmatic Nucleus/physiopathology , Treatment Outcome
2.
J Clin Invest ; 131(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34596047

ABSTRACT

Neurodegenerative diseases encompass a large group of conditions that are clinically and pathologically diverse yet are linked by a shared pathology of misfolded proteins. The accumulation of insoluble aggregates is accompanied by a progressive loss of vulnerable neurons. For some patients, the symptoms are motor focused (ataxias), while others experience cognitive and psychiatric symptoms (dementias). Among the shared symptoms of neurodegenerative diseases is a disruption of the sleep/wake cycle that occurs early in the trajectory of the disease and may be a risk factor for disease development. In many cases, the disruption in the timing of sleep and other rhythmic physiological markers immediately raises the possibility of neurodegeneration-driven disruption of the circadian timing system. The aim of this Review is to summarize the evidence supporting the hypothesis that circadian disruption is a core symptom within neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease, and to discuss the latest progress in this field. The Review discusses evidence that neurodegenerative processes may disrupt the structure and function of the circadian system and describes circadian-based interventions as well as timed drug treatments that may improve a wide range of symptoms associated with neurodegenerative disorders. It also identifies key gaps in our knowledge.


Subject(s)
Chronobiology Disorders/etiology , Neurodegenerative Diseases/physiopathology , Animals , Body Temperature , Circadian Rhythm/physiology , Humans , Hydrocortisone/blood , Inflammation/etiology , Mice , Neurodegenerative Diseases/therapy , Protein Folding , Suprachiasmatic Nucleus/pathology , Suprachiasmatic Nucleus/physiopathology
3.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34155139

ABSTRACT

Artificial lighting, day-length changes, shift work, and transmeridian travel all lead to sleep-wake disturbances. The nychthemeral sleep-wake cycle (SWc) is known to be controlled by output from the central circadian clock in the suprachiasmatic nuclei (SCN), which is entrained to the light-dark cycle. Additionally, via intrinsically photosensitive retinal ganglion cells containing the photopigment melanopsin (Opn4), short-term light-dark alternations exert direct and acute influences on sleep and waking. However, the extent to which longer exposures typically experienced across the 24-h day exert such an effect has never been clarified or quantified, as disentangling sustained direct light effects (SDLE) from circadian effects is difficult. Recording sleep in mice lacking a circadian pacemaker, either through transgenesis (Syt10cre/creBmal1fl/- ) or SCN lesioning and/or melanopsin-based phototransduction (Opn4-/- ), we uncovered, contrary to prevailing assumptions, that the contribution of SDLE is as important as circadian-driven input in determining SWc amplitude. Specifically, SDLE were primarily mediated (>80%) through melanopsin, of which half were then relayed through the SCN, revealing an ancillary purpose for this structure, independent of its clock function in organizing SWc. Based on these findings, we designed a model to estimate the effect of atypical light-dark cycles on SWc. This model predicted SWc amplitude in mice exposed to simulated transequatorial or transmeridian paradigms. Taken together, we demonstrate this SDLE is a crucial mechanism influencing behavior on par with the circadian system. In a broader context, these findings mandate considering SDLE, in addition to circadian drive, for coping with health consequences of atypical light exposure in our society.


Subject(s)
Light , Models, Biological , Rod Opsins/metabolism , Sleep Wake Disorders/diagnosis , Animals , Circadian Clocks/physiology , Jet Lag Syndrome/physiopathology , Light Signal Transduction , Male , Mice, Inbred C57BL , Sleep , Sleep Wake Disorders/physiopathology , Suprachiasmatic Nucleus/physiopathology , Wakefulness
4.
J Chem Neuroanat ; 117: 101991, 2021 11.
Article in English | MEDLINE | ID: mdl-34182089

ABSTRACT

Chronic lead (Pb) exposure affects the circadian physiological processes regulated by suprachiasmatic nucleus (SCN), which is synchronized (entrainment) by light. Disorders in the entrainment capacity of an organism alter its performance to interact with the environment, thus affecting its health status. The objectives of the present study were to evaluate whether chronic early Pb exposure affects the entrainment of the circadian rhythm of locomotor activity by light and to explore the possible mechanisms involved. Adult male Wistar rats, control and chronically exposed to Pb (320 ppm) in drinking water from gestation to adult age, were used. Assessment of the metal level showed a significant increase of Pb in the blood, hypothalamus and prefrontal cortex of the experimental rats. Continuous registrations of locomotor activity (12 h:12 h light-dark cycle) depicted that Pb induces important delay of this activity when the light was turned off. The Pb exposed animals entrained faster with a photoperiod delay of 6 h, (lights on at 13:00 h), and maintained the significant delay in the onset of activity at lights out. In continuous darkness, the animals were exposed to a light pulse at circadian time 23. This resulted in a significant decrease of photo-stimulated neurons (immunoreactivity to c-Fos) in the SCN of the metal-exposed animals. These results show that chronic early Pb exposure alters the photic entrainment of the rhythm of locomotor activity, which is evidenced by a significant decrease in both the number of photo-stimulated neurons and neuronal population (Nissl stain) of the SCN.


Subject(s)
Circadian Rhythm/drug effects , Lead/toxicity , Locomotion/drug effects , Neurons/drug effects , Photoperiod , Suprachiasmatic Nucleus/drug effects , Age Factors , Animals , Circadian Rhythm/physiology , Lead/administration & dosage , Locomotion/physiology , Male , Neurons/physiology , Photic Stimulation/methods , Rats , Rats, Wistar , Suprachiasmatic Nucleus/physiopathology
5.
PLoS One ; 16(6): e0251604, 2021.
Article in English | MEDLINE | ID: mdl-34086699

ABSTRACT

BACKGROUND: Physiological circadian rhythms (CRs) are complex processes with 24-hour oscillations that regulate diverse biological functions. Chronic weekly light/dark (LD) shifting (CR disruption; CRD) in mice results in colonic hyperpermeability. However, the mechanisms behind this phenomenon are incompletely understood. One potential innovative in vitro method to study colonic CRs are colon organoids. The goals of this study were to utilize circadian clock gene Per2 luciferase reporter (Per2::Luc) mice to measure the effects of chronic LD shifting on colonic tissue circadian rhythmicity ex vivo and to determine if organoids made from shifted mice colons recapitulate the in vivo phenotype. METHODS: Non-shifted (NS) and shifted (S) BL6 Per2::Luc mice were compared after a 22-week experiment. NS mice had a standard 12h light/12h dark LD cycle throughout. S mice alternated 12h LD patterns weekly, with light from 6am-6pm one week followed by shifting light to 6pm-6am the next week for 22 weeks. Mice were tested for intestinal permeability while colon tissue and organoids were examined for CRs of bioluminescence and proteins of barrier function and cell fate. RESULTS: There was no absolute difference in NS vs. S 24h circadian period or phase. However, chronic LD shifting caused Per2::Luc S mice colon tissue to exhibit significantly greater variability in both the period and phase of Per2::Luc rhythms than NS mice colon tissue and organoids. Chronic LD shifting also resulted in increased colonic permeability of the Per2::Luc mice as well as decreased protein markers of intestinal permeability in colonic tissue and organoids from shifted Per2:Luc mice. CONCLUSIONS: Our studies support a model in which chronic central circadian disruption by LD shifting alters the circadian phenotype of the colon tissue and results in colon leakiness and loss of colonic barrier function. These CRD-related changes are stably expressed in colon stem cell derived organoids from CRD mice.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Colon/physiopathology , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Humans , Intestines/physiopathology , Luciferases/genetics , Male , Mice , Mice, Inbred C57BL , Motor Activity/genetics , Motor Activity/physiology , Period Circadian Proteins/genetics , Permeability , Photoperiod , Suprachiasmatic Nucleus/physiopathology
6.
J Pineal Res ; 70(3): e12724, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33615553

ABSTRACT

Cancer-related fatigue (CRF) and stress are common symptoms in cancer patients and represent early side effects of cancer treatment which affect the life quality of the patients. CRF may partly depend on disruption of the circadian rhythm. Locomotor activity and corticosterone rhythms are two important circadian outputs which can be used to analyze possible effects on the circadian function during cancer development and treatment. The present study analyzes the relationship between locomotor activity rhythm, corticosterone levels, hepatocellular carcinoma (HCC) development, and radiotherapy treatment in a mouse model. HCC was induced in mice by single injection of diethylnitrosamine (DEN) and chronic treatment of phenobarbital in drinking water. Another group received chronic phenobarbital treatment only. Tumor bearing animals were divided randomly into four groups irradiated at four different Zeitgeber time points. Spontaneous locomotor activity was recorded continuously; serum corticosterone levels and p-ERK immunoreaction in the suprachiasmatic nucleus (SCN) were investigated. Phenobarbital treated mice showed damped corticosterone levels and a less stable 24 hours activity rhythm as well as an increase in activity during the light phase, reminiscent of sleep disruption. The tumor mice showed an increase in corticosterone level during the inactive phase and decreased activity during the dark phase, reminiscent of CRF. After irradiation, corticosterone levels were further increased and locomotor activity rhythms were disrupted. Lowest corticosterone levels were observed after irradiation during the early light phase; thus, this time might be the best to apply radiotherapy in order to minimize side effects.


Subject(s)
Activity Cycles , Behavior, Animal , Carcinoma, Hepatocellular/radiotherapy , Circadian Rhythm , Corticosterone/blood , Liver Neoplasms, Experimental/radiotherapy , Locomotion , Suprachiasmatic Nucleus/physiopathology , Animals , Biomarkers/blood , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/physiopathology , Chronotherapy , Diethylnitrosamine , Disease Progression , Extracellular Signal-Regulated MAP Kinases/metabolism , Liver Neoplasms, Experimental/blood , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/physiopathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Period Circadian Proteins/genetics , Phenobarbital , Phosphorylation , Suprachiasmatic Nucleus/metabolism , Time Factors
7.
J Psychiatr Res ; 132: 123-130, 2021 01.
Article in English | MEDLINE | ID: mdl-33091686

ABSTRACT

Diurnal mood variation (DMV), a common symptom of major depressive disorder (MDD), is associated with circadian related genes and dysregulation of the suprachiasmatic nucleus (SCN). Previous research confirmed that the RORA gene is involved in the regulation of circadian rhythms. In this study, we hypothesized that polymorphisms of RORA may affect DMV symptoms of MDD through functional changes in the SCN. A total of 208 patients diagnosed with depression and 120 control subjects were enrolled and underwent a resting-state functional magnetic resonance imaging (rs-fMRI). Blood samples were collected and genotyping of 9 RORA gene SNPs were performed using next-generation sequencing technology. Patients were categorized as an AA genotype or C allele carriers based on RORA rs72752802 polymorphism. SCN-seed functional connectivity (FC) was compared between the two groups and correlation with severity of DMV was analyzed. Finally, a mediation analysis was performed to further determine FC intermediary effects. We observed that rs72752802 was significantly associated with patients' DMV symptoms. C allele carriers of rs72752802 showed significantly decreased FC between the right SCN and right superior temporal gyrus (rSTG). This was also correlated with DMV symptoms. In addition, the rs72752802 SNP influenced DMV symptoms through intermediary effects of SCN-rSTG connectivity. The study presented here provides a neurological and genetic basis for understanding depressed patients experiencing DMV.


Subject(s)
Depressive Disorder, Major , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Suprachiasmatic Nucleus/physiopathology , Temporal Lobe/physiopathology , Affect , Circadian Rhythm , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Humans , Magnetic Resonance Imaging , Polymorphism, Genetic
8.
Int J Mol Sci ; 21(11)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486326

ABSTRACT

: Infertility represents a growing health problem in industrialized countries. Thus, a greater understanding of the molecular networks involved in this disease could be critical for the development of new therapies. A recent finding revealed that circadian rhythmicity disruption is one of the main causes of poor reproductive outcome. The circadian clock system beats circadian rhythms and modulates several physiological functions such as the sleep-wake cycle, body temperature, heart rate, and hormones secretion, all of which enable the body to function in response to a 24 h cycle. This intricated machinery is driven by specific genes, called "clock genes" that fine-tune body homeostasis. Stress of modern lifestyle can determine changes in hormone secretion, favoring the onset of infertility-related conditions that might reflect disfunctions within the hypothalamic-pituitary-gonadal axis. Consequently, the loss of rhythmicity in the suprachiasmatic nuclei might affect pulsatile sexual hormones release. Herein, we provide an overview of the recent findings, in both animal models and humans, about how fertility is influenced by circadian rhythm. In addition, we explore the complex interaction among hormones, fertility and the circadian clock. A deeper analysis of these interactions might lead to novel insights that could ameliorate the therapeutic management of infertility and related disorders.


Subject(s)
Circadian Clocks , Circadian Rhythm , Infertility/etiology , Sleep Disorders, Circadian Rhythm/complications , Androgens/metabolism , Animals , Body Temperature , Estrogens/metabolism , Female , Glucocorticoids/metabolism , Gonadotropins/metabolism , Heart Rate , Homeostasis , Hormones/metabolism , Humans , Male , Melatonin/metabolism , Mice, Transgenic , Sleep Disorders, Circadian Rhythm/physiopathology , Spermatogenesis , Suprachiasmatic Nucleus/physiopathology
9.
eNeuro ; 6(6)2019.
Article in English | MEDLINE | ID: mdl-31744839

ABSTRACT

The circadian clock located in the suprachiasmatic nucleus (SCN) in mammals entrains to ambient light via the retinal photoreceptors. This allows behavioral rhythms to change in synchrony with seasonal and daily changes in light period. Circadian rhythmicity is progressively disrupted in Huntington's disease (HD) and in HD mouse models such as the transgenic R6/2 line. Although retinal afferent inputs to the SCN are disrupted in R6/2 mice at late stages, they can respond to changes in light/dark cycles, as seen in jet lag and 23 h/d paradigms. To investigate photic entrainment and SCN function in R6/2 mice at different stages of disease, we first assessed the effect on locomotor activity of exposure to a 15 min light pulse given at different times of the day. We then placed the mice under five non-standard light conditions. These were light cycle regimes (T-cycles) of T21 (10.5 h light/dark), T22 (11 h light/dark), T26 (13 h light/dark), constant light, or constant dark. We found a progressive impairment in photic synchronization in R6/2 mice when the stimuli required the SCN to lengthen rhythms (phase-delaying light pulse, T26, or constant light), but normal synchronization to stimuli that required the SCN to shorten rhythms (phase-advancing light pulse and T22). Despite the behavioral abnormalities, we found that Per1 and c-fos gene expression remained photo-inducible in SCN of R6/2 mice. Both the endogenous drift of the R6/2 mouse SCN to shorter periods and its inability to adapt to phase-delaying changes will contribute to the HD circadian dysfunction.


Subject(s)
Circadian Rhythm/physiology , Huntington Disease/physiopathology , Motor Activity/physiology , Photoperiod , Retina/physiopathology , Suprachiasmatic Nucleus/physiopathology , Animals , Disease Models, Animal , Gene Expression Regulation , Huntington Disease/metabolism , Mice , Neurons/metabolism , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Photic Stimulation , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Retina/metabolism , Suprachiasmatic Nucleus/metabolism
10.
Cephalalgia ; 39(13): 1720-1727, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31615269

ABSTRACT

AIM: To describe neuronal networks underlying commonly reported migraine premonitory symptoms and to discuss how these might precipitate migraine pain. BACKGROUND: Migraine headache is frequently preceded by a distinct and well characterized premonitory phase including symptoms like yawning, sleep disturbances, alterations in appetite and food intake and hypersensitivity to certain external stimuli. Recent neuroimaging studies strongly suggest the hypothalamus as the key mediator of the premonitory phase and also suggested alterations in hypothalamic networks as a mechanism of migraine attack generation. When looking at the vast evidence from basic research within the last decades, hypothalamic and thalamic networks are most likely to integrate peripheral influences with central mechanisms, facilitating the precipitation of migraine headaches. These networks include sleep, feeding and stress modulating centers within the hypothalamus, thalamic pathways and brainstem centers closely involved in trigeminal pain processing such as the spinal trigeminal nucleus and the rostral ventromedial medulla, all of which are closely interconnected. CONCLUSION: Taken together, these networks represent the pathophysiological basis for migraine premonitory symptoms as well as a possible integration site of peripheral so-called "triggers" with central attack facilitating processes.


Subject(s)
Migraine without Aura/physiopathology , Prodromal Symptoms , Affect , Appetite/physiology , Brain Stem/physiopathology , Circadian Rhythm/physiology , Craving/physiology , Eating , Homeostasis , Humans , Migraine without Aura/complications , Migraine without Aura/etiology , Migraine without Aura/psychology , Nerve Net/physiopathology , Neuroimaging , Neurotransmitter Agents/physiology , Nitric Oxide/physiology , Photophobia/etiology , Photophobia/physiopathology , Physical Stimulation/adverse effects , Sleep Stages/physiology , Suprachiasmatic Nucleus/physiopathology , Thalamus/physiopathology
11.
Int J Mol Sci ; 20(11)2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31195684

ABSTRACT

The kidney harbors one of the strongest circadian clocks in the body. Kidney failure has long been known to cause circadian sleep disturbances. Using an adenine-induced model of chronic kidney disease (CKD) in mice, we probe the possibility that such sleep disturbances originate from aberrant circadian rhythms in kidney. Under the CKD condition, mice developed unstable behavioral circadian rhythms. When observed in isolation in vitro, the pacing of the master clock, the suprachiasmatic nucleus (SCN), remained uncompromised, while the kidney clock became a less robust circadian oscillator with a longer period. We find this analogous to the silencing of a strong slave clock in the brain, the choroid plexus, which alters the pacing of the SCN. We propose that the kidney also contributes to overall circadian timekeeping at the whole-body level, through bottom-up feedback in the hierarchical structure of the mammalian circadian clocks.


Subject(s)
Circadian Clocks/physiology , Kidney/physiology , Adenine , Animals , Disease Models, Animal , Male , Mice, Inbred C57BL , Period Circadian Proteins/metabolism , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/physiopathology , Suprachiasmatic Nucleus/physiopathology
12.
Yale J Biol Med ; 92(2): 155-167, 2019 06.
Article in English | MEDLINE | ID: mdl-31249476

ABSTRACT

Diabetic retinopathy (DR) is the most common complications of diabetes and a leading cause of blindness in the United States. The retinal neuronal changes precede the vascular dysfunction observed in DR. The electroretinogram (ERG) determines the electrical activity of retinal neural and non-neuronal cells. The retinal ERG amplitude is reduced gradually on the progression of DR to a more severe form. Circadian rhythms play an important role in the physiological function of the body. While ERG is known to exhibit a diurnal rhythm, it is not known whether a progressive increase in the duration of diabetes affects the physiological rhythm of retinal ERG. To study this, we determined the ERG rhythm of db/db mice, an animal model of type 2 diabetes at 2, 4, and 6 months of diabetes under a regular light-dark cycle and constant dark. Our studies demonstrate that the diurnal rhythm of ERG amplitude for retinal a-wave and b-wave was altered in diabetes. The implicit time was increased in db/db mice while the oscillatory potential was reduced. Moreover, there was a progressive decline in an intrinsic rhythm of ERG upon an increase in the duration of diabetes. In conclusion, our studies provide novel insights into the pathogenic mechanism of DR by showing an altered circadian rhythm of the ERG.


Subject(s)
Circadian Rhythm/physiology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Retinopathy/physiopathology , Disease Models, Animal , Electroretinography/methods , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/complications , Diabetic Retinopathy/genetics , Humans , Mice, Inbred C57BL , Mice, Knockout , Retina/metabolism , Retina/pathology , Retina/physiopathology , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/pathology , Suprachiasmatic Nucleus/physiopathology , Time Factors
13.
Yale J Biol Med ; 92(2): 259-270, 2019 06.
Article in English | MEDLINE | ID: mdl-31249487

ABSTRACT

Circadian disruption has been linked to markers for poor health outcomes in humans and animal models. What is it about circadian disruption that is problematic? One hypothesis is that phase resetting of the circadian system, which occurs in response to changes in environmental timing cues, leads to internal desynchrony within the organism. Internal desynchrony is understood as acute changes in phase relationships between biological rhythms from different cell groups, tissues, or organs within the body. Do we have strong evidence for internal desynchrony associated with or caused by circadian clock resetting? Here we review the literature, highlighting several key studies from measures of gene expression in laboratory rodents. We conclude that current evidence offers strong support for the premise that some protocols for light-induced resetting are associated with internal desynchrony. It is important to continue research to test whether internal desynchrony is necessary and/or sufficient for negative health impact of circadian disruption.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Periodicity , Photoperiod , Animals , Circadian Clocks/genetics , Circadian Clocks/radiation effects , Circadian Rhythm/genetics , Circadian Rhythm/radiation effects , Gene Expression Regulation/radiation effects , Humans , Light , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiopathology , Suprachiasmatic Nucleus/radiation effects
14.
Yale J Biol Med ; 92(2): 271-281, 2019 06.
Article in English | MEDLINE | ID: mdl-31249488

ABSTRACT

Circadian rhythms, or biological oscillations of approximately 24 hours, impact almost all aspects of our lives by regulating the sleep-wake cycle, hormone release, body temperature fluctuation, and timing of food consumption. The molecular machinery governing these rhythms is similar across organisms ranging from unicellular fungi to insects, rodents, and humans. Circadian entrainment, or temporal synchrony with one's environment, is essential for survival. In mammals, the central circadian pacemaker is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and mediates entrainment to environmental conditions. While the light:dark cycle is the primary environmental cue, arousal-inducing, non-photic signals such as food consumption, exercise, and social interaction are also potent synchronizers. Many of these stimuli enhance dopaminergic signaling suggesting that a cohesive circadian physiology depends on the relationship between circadian clocks and the neuronal circuits responsible for detecting salient events. Here, we review the inner workings of mammalian circadian entrainment, and describe the health consequences of circadian rhythm disruptions with an emphasis on dopamine signaling.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Dopamine/physiology , Dopaminergic Neurons/physiology , Signal Transduction/physiology , Suprachiasmatic Nucleus/physiopathology , Animals , Dopamine/metabolism , Humans , Photoperiod , Suprachiasmatic Nucleus/metabolism
15.
Math Biosci Eng ; 16(4): 1893-1913, 2019 03 07.
Article in English | MEDLINE | ID: mdl-31137191

ABSTRACT

Circadian rhythms have been observed in behavioral and physiological activities of living things exposed to the natural 24 h light-darkness cycle. Interestingly, even under constant darkness, living organisms maintain a robust endogenous circadian rhythm suggesting the existence of an endogenous clock. In mammals, the endogenous clock is located in the suprachiasmatic nucleus (SCN) which is composed of about 20,000 neuronal oscillators. These neuronal oscillators are heterogeneous in their properties, including the intrinsic period, intrinsic amplitude, light information sensitivity, cellular coupling strength, intrinsic amplitudes and the topological links. In this review, we introduce the influence of the heterogeneity of these properties on the two main functions of the SCN, i.e. the free running rhythm in constant darkness and entrainment to the external cycle, based on mathematical models where heterogeneous neuronal oscillators are coupled to form a network. Our findings show that the heterogeneities can alter the free running periods under constant darkness and the entrainment ability to the external cycle for the SCN by controlling a fine balance between flexibility and robustness of the clock. These findings can explain experimental observation, e.g., why the free running periods and entrainment abilities are different between species, and shed light on the heterogeneity of the SCN network.


Subject(s)
Circadian Clocks , Circadian Rhythm , Models, Neurological , Neurons/physiology , Suprachiasmatic Nucleus/physiopathology , Algorithms , Animals , Computer Simulation , Darkness , Hormones/physiology , Humans , Oscillometry
16.
J Neurosci Res ; 96(12): 1862-1875, 2018 12.
Article in English | MEDLINE | ID: mdl-30168855

ABSTRACT

Disturbances in sleep/wake cycle are a common complaint of individuals with Huntington's disease (HD) and are displayed by HD mouse models. The underlying mechanisms, including the possible role of the circadian timing system, are not well established. The BACHD mouse model of HD exhibits disrupted behavioral and physiological rhythms, including decreased electrical activity in the central circadian clock (suprachiasmatic nucleus, SCN). In this study, electrophysiological techniques were used to explore the ionic underpinning of the reduced spontaneous neural activity in male mice. We found that SCN neural activity rhythms were lost early in the disease progression and was accompanied by loss of the normal daily variation in resting membrane potential in the mutant SCN neurons. The low neural activity could be transiently reversed by direct current injection or application of exogenous N-methyl-d-aspartate (NMDA) thus demonstrating that the neurons have the capacity to discharge at WT levels. Exploring the potassium currents known to regulate the electrical activity of SCN neurons, our most striking finding was that these cells in the mutants exhibited an enhancement in the large-conductance calcium activated K+ (BK) currents. The expression of the pore forming subunit (Kcnma1) of the BK channel was higher in the mutant SCN. We found a similar decrease in daytime electrical activity and enhancement in the magnitude of the BK currents early in disease in another HD mouse model (Q175). These findings suggest that SCN neurons of both HD models exhibit early pathophysiology and that dysregulation of BK current may be responsible.


Subject(s)
Circadian Clocks/physiology , Huntington Disease/physiopathology , Suprachiasmatic Nucleus/physiopathology , Action Potentials/physiology , Animals , Disease Models, Animal , GABA-A Receptor Antagonists/pharmacology , Huntington Disease/metabolism , Large-Conductance Calcium-Activated Potassium Channels/physiology , Male , Membrane Potentials/physiology , Mice , Mice, Transgenic , Neurons/physiology , Patch-Clamp Techniques , Pyridazines/pharmacology
17.
Chronobiol Int ; 35(9): 1221-1235, 2018 09.
Article in English | MEDLINE | ID: mdl-29787305

ABSTRACT

The present study investigates the circadian behavior of spontaneously hypertensive rats (SHRs) during the pre-hypertensive and hypertensive stage, with the aim to gain insight into whether observed changes in the functionality of suprachiasmatic nucleus (SCN) in the hypertensive state are cause or consequence of hypertension. Four types of animals were used in this study: (1) SHRs which develop hypertension genetically; (2) their normotensive controls, Wistar Kyoto rats (WKYs); (3) Wistar rats whereby hypertension was surgically induced (2 Kidney 1 Clamp (2K1C) method); and (4) sham-operated control Wistar rats. Period length and activity levels and amplitude changes of locomotor and wheel running activity were determined, in constant conditions, as a measure of the functionality of the SCN. Hereto two conditions were used, constant darkness (0 lux) and constant dim (5 lux) light. SHRs showed a shortened period of their locomotor and running wheel activity rhythms in constant darkness during both pre-hypertensive and hypertensive stages and exhibited period lengthening in constant dim light conditions, only during hypertensive stages. Total amount as well as the amplitude of daily running wheel rhythms showed an inverse correlation with the period length, and this relation was significantly different in SHRs compared to WKYs. None of the aforementioned changes in circadian rhythms were observed after the surgical induction of hypertension. The present findings suggest early functional changes of the SCN in the etiology of spontaneous hypertension.


Subject(s)
Circadian Rhythm/physiology , Hypertension/physiopathology , Motor Activity/physiology , Suprachiasmatic Nucleus/physiopathology , Animals , Behavior, Animal , Blood Pressure/physiology , Light , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Running
18.
Vascul Pharmacol ; 108: 1-7, 2018 09.
Article in English | MEDLINE | ID: mdl-29778521

ABSTRACT

The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease.


Subject(s)
Blood Vessels/metabolism , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Circadian Rhythm , Hemodynamics , Suprachiasmatic Nucleus/metabolism , Vascular Diseases/metabolism , Blood Vessels/drug effects , Blood Vessels/physiopathology , Cardiovascular Agents/administration & dosage , Circadian Rhythm Signaling Peptides and Proteins/genetics , Drug Chronotherapy , Gene Expression Regulation , Hemodynamics/drug effects , Humans , Signal Transduction , Suprachiasmatic Nucleus/drug effects , Suprachiasmatic Nucleus/physiopathology , Vascular Diseases/drug therapy , Vascular Diseases/genetics , Vascular Diseases/physiopathology
19.
Chronobiol Int ; 35(8): 1153-1167, 2018 08.
Article in English | MEDLINE | ID: mdl-29688088

ABSTRACT

Exposure to light at night is a disruptive condition for the adult circadian system, leading to arrhythmicity in nocturnal rodents. Circadian disruption is a risk factor for developing physiological and behavioral alterations, including weight gain and metabolic disease. During early stages of development, the circadian system undergoes a critical period of adjustment, and it is especially vulnerable to altered lighting conditions that may program its function, leading to long-term effects. We hypothesized that during lactation a disrupted light-dark cycle due to light at night may disrupt the circadian system and in the long term induce metabolic disorders. Here we explored in pups, short- and long-term effects of constant light (LL) during lactation. In the short term, LL caused a loss of rhythmicity and a reduction in the immunopositive cells of VIP, AVP, and PER1 in the suprachiasmatic nucleus (SCN). In the short term, the affection on the circadian clock in the pups resulted in body weight gain, loss of daily rhythms in general activity, plasma glucose and triglycerides (TG). Importantly, the DD conditions during development also induced altered daily rhythms in general activity and in the SCN. Exposure to LD conditions after lactation did not restore rhythmicity in the SCN, and the number of immunopositve cells to VIP, AVP, and PER1 remained reduced. In the long term, daily rhythmicity in general activity was restored; however, daily rhythms in glucose and TG remained disrupted, and daily mean levels of TG were significantly increased. Present results point out the programming role played by the LD cycle during early development in the function of the circadian system and on metabolism. This study points out the risk represented by exposure to an altered light-dark cycle during early stages of development. ABBREVIATIONS: AVP: arginine vasopressin peptide; CRY: cryptochrome; DD: constant darkness; DM: dorsomedial; LD: light-dark cycle; LL: constant light; NICUs: neonatal intensive care units; P: postnatal days; PER: period; S.E.M.: standard error of the mean; SCN: suprachiasmatic nucleus; TG: triglycerides; VIP: vasointestinal peptide; VL: ventrolateral; ZT: zeitgeber time.


Subject(s)
Biological Clocks/radiation effects , Circadian Rhythm/radiation effects , Energy Metabolism/radiation effects , Lactation , Light/adverse effects , Photoperiod , Suprachiasmatic Nucleus/radiation effects , Animals , Animals, Newborn , Arginine Vasopressin/metabolism , Blood Glucose/metabolism , Female , Period Circadian Proteins/metabolism , Pregnancy , Rats, Wistar , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiopathology , Time Factors , Triglycerides/blood , Vasoactive Intestinal Peptide/metabolism , Weight Gain/radiation effects
20.
Neurobiol Aging ; 66: 75-84, 2018 06.
Article in English | MEDLINE | ID: mdl-29547750

ABSTRACT

Robust physiological circadian rhythms form an integral part of well-being. The aging process has been found to negatively impact systems that drive circadian physiology, typically manifesting as symptoms associated with abnormal/disrupted sleeping patterns. Here, we investigated the age-related decline in light-driven circadian entrainment in male C57BL/6J mice. We compared light-driven resetting of circadian behavioral activity in young (1-2 months) and old (14-18 months) mice and explored alterations in the glutamatergic pathway at the level of the circadian pacemaker, the suprachiasmatic nucleus (SCN). Aged animals showed a significant reduction in sensitivity to behavioral phase resetting by light. We show that this change was through alterations in N-Methyl-D-aspartate (NMDA) signaling at the SCN, where NMDA, a glutamatergic agonist, was less potent in inducing clock resetting. Finally, we show that this shift in NMDA sensitivity was through the reduced SCN expression of this receptor's NR2B subunit. Only in young animals did an NR2B antagonist attenuate behavioral resetting. These results can help target treatments that aim to improve both physiological and behavioral circadian entrainment in aged populations.


Subject(s)
Aging/physiology , Aging/psychology , Chronobiology Disorders/etiology , Chronobiology Disorders/genetics , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Eye/physiopathology , Light , N-Methylaspartate/physiology , Signal Transduction/physiology , Suprachiasmatic Nucleus/physiopathology , Visual Pathways/physiopathology , Animals , Male , Mice, Inbred C57BL , N-Methylaspartate/metabolism , Suprachiasmatic Nucleus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...